199 research outputs found

    A Delta Debugger for ILP Query Execution

    Full text link
    Because query execution is the most crucial part of Inductive Logic Programming (ILP) algorithms, a lot of effort is invested in developing faster execution mechanisms. These execution mechanisms typically have a low-level implementation, making them hard to debug. Moreover, other factors such as the complexity of the problems handled by ILP algorithms and size of the code base of ILP data mining systems make debugging at this level a very difficult job. In this work, we present the trace-based debugging approach currently used in the development of new execution mechanisms in hipP, the engine underlying the ACE Data Mining system. This debugger uses the delta debugging algorithm to automatically reduce the total time needed to expose bugs in ILP execution, thus making manual debugging step much lighter.Comment: Paper presented at the 16th Workshop on Logic-based Methods in Programming Environments (WLPE2006

    An Open Ended Tree

    Full text link
    An open ended list is a well known data structure in Prolog programs. It is frequently used to represent a value changing over time, while this value is referred to from several places in the data structure of the application. A weak point in this technique is that the time complexity is linear in the number of updates to the value represented by the open ended list. In this programming pearl we present a variant of the open ended list, namely an open ended tree, with an update and access time complexity logarithmic in the number of updates to the value

    Region-based memory management for Mercury programs

    Full text link
    Region-based memory management (RBMM) is a form of compile time memory management, well-known from the functional programming world. In this paper we describe our work on implementing RBMM for the logic programming language Mercury. One interesting point about Mercury is that it is designed with strong type, mode, and determinism systems. These systems not only provide Mercury programmers with several direct software engineering benefits, such as self-documenting code and clear program logic, but also give language implementors a large amount of information that is useful for program analyses. In this work, we make use of this information to develop program analyses that determine the distribution of data into regions and transform Mercury programs by inserting into them the necessary region operations. We prove the correctness of our program analyses and transformation. To execute the annotated programs, we have implemented runtime support that tackles the two main challenges posed by backtracking. First, backtracking can require regions removed during forward execution to be "resurrected"; and second, any memory allocated during a computation that has been backtracked over must be recovered promptly and without waiting for the regions involved to come to the end of their life. We describe in detail our solution of both these problems. We study in detail how our RBMM system performs on a selection of benchmark programs, including some well-known difficult cases for RBMM. Even with these difficult cases, our RBMM-enabled Mercury system obtains clearly faster runtimes for 15 out of 18 benchmarks compared to the base Mercury system with its Boehm runtime garbage collector, with an average runtime speedup of 24%, and an average reduction in memory requirements of 95%. In fact, our system achieves optimal memory consumption in some programs.Comment: 74 pages, 23 figures, 11 tables. A shorter version of this paper, without proofs, is to appear in the journal Theory and Practice of Logic Programming (TPLP

    Nesting Probabilistic Inference

    Full text link
    When doing inference in ProbLog, a probabilistic extension of Prolog, we extend SLD resolution with some additional bookkeeping. This additional information is used to compute the probabilistic results for a probabilistic query. In Prolog's SLD, goals are nested very naturally. In ProbLog's SLD, nesting probabilistic queries interferes with the probabilistic bookkeeping. In order to support nested probabilistic inference we propose the notion of a parametrised ProbLog engine. Nesting becomes possible by suspending and resuming instances of ProbLog engines. With our approach we realise several extensions of ProbLog such as meta-calls, negation, and answers of probabilistic goals.Comment: Online Proceedings of the 11th International Colloquium on Implementation of Constraint LOgic Programming Systems (CICLOPS 2011), Lexington, KY, U.S.A., July 10, 201

    DNF Sampling for ProbLog Inference

    Full text link
    Inference in probabilistic logic languages such as ProbLog, an extension of Prolog with probabilistic facts, is often based on a reduction to a propositional formula in DNF. Calculating the probability of such a formula involves the disjoint-sum-problem, which is computationally hard. In this work we introduce a new approximation method for ProbLog inference which exploits the DNF to focus sampling. While this DNF sampling technique has been applied to a variety of tasks before, to the best of our knowledge it has not been used for inference in probabilistic logic systems. The paper also presents an experimental comparison with another sampling based inference method previously introduced for ProbLog.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201
    • …
    corecore